Wind Power Potential for State-owned Lands

Public listening sessions for Cape Cod and the Berkshires June 17 and 24th, 2009

Patrick Quinlan

Associate Director UMass Wind Energy Center Amherst, Massachusetts

Topics

About the UMass Wind Energy Center

Design of wind turbines and wind facilities

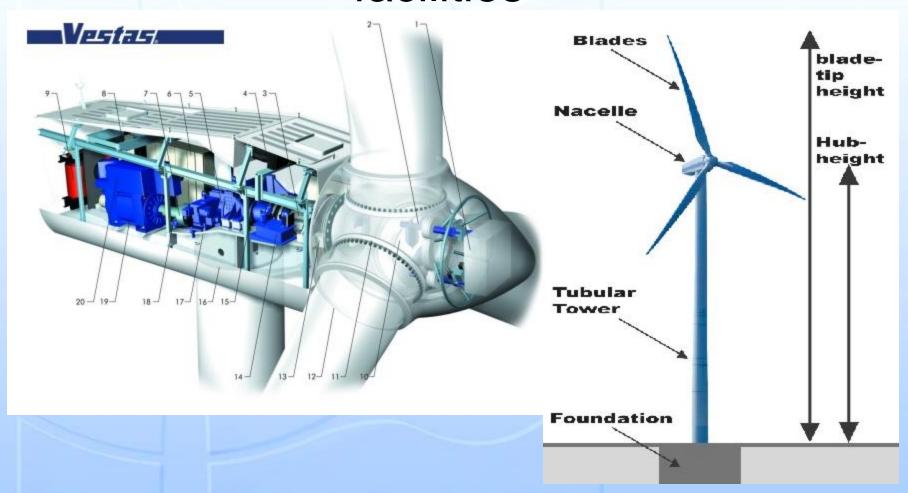
Common terminology

Assessing the wind resource

Siting Issues--technical and economic

Siting Issues--environmental

Where to get good, detailed information


About the Wind Energy Center

- The oldest wind energy engineering graduate program in the U.S.
- 4 faculty, 15 graduate students, and 6 staff.
- Assist the Commonwealth in wind siting, feasibility assessments, and technical studies.
- Original proposers of the Charlestown blade test center.
- Original prospectors of the wind energy resources in the Cape and Islands.
- www.umass.edu/windenergy

Design of wind turbines and wind facilities

Common wind turbine terminology

- Wind turbines consist of four main components—the rotor, transmission (gearbox), generator, yaw system, and control systems. Turbines can be direct drive (no gearbox) as well.
- The nacelle rotates (or yaws) according to the wind direction.
- Turbines can vary rotational speed, blade pitch, or both.
- Turbines deployed in multiple groups, called arrays, are arranged to avoid shadowing the wind from turbine to turbine.
- Turbines can be turned on and off remotely by an operator at a central control station.
- Turbines don't spin unless the winds are sufficient to generate electricity, or in extreme winds associated with severe storms.

Other Important Wind Power Terminology

- **Turbine power rating** --the maximum instantaneous power output of the wind turbine, quoted in Watts. Typical value is 1.5 Megawatts (1.5 million Watts).
- Turbine energy production --a cumulative amount of energy produced by the wind turbine for a given period, usually a year. Quoted in kilowatt-hours (kWh) or megawatt-hours (MWh).
- Capacity factor -- the average power output of the wind turbine, as a fraction of its power rating. A typical value is 28 percent. This reflects both the variability of the wind at a site and the efficiency of the turbine.
- Average wind speed --the long-term average speed of the wind, usually quoted in meters per second. (1 m/s = 2.24 mph). Typical value is 6 m/s.
- Tower height --the height of the turbine to the hub of the rotor, usually quoted in meters (1 meter = 3.28 feet) Roughly of a yard plus 10 percent. Typical values are 80 meters.
- Wind shear -- the speed-up of wind with height, given as the exponent of a power-law equation. Typical low value--. 15; high value--. 30.
- **Turbulence intensity** --the roughness of the wind at a site. This is a dominant criteria for specifying a wind turbine. Typical low value--.15; high value--.30.

Assessing the wind resource

- Understand potential benefits
 - Energy production
 - Environmental benefit
 - Economic benefit
- i.e Reduce risk
- Community focus
- Spec & order equipment

Siting Issues--technical and economic

Siting Issues--environmental

- Property Values
- Visual Aspects
- Noise
- Birds and Bats
- Shadow Flicker
- Net Environmental
- Global Benefits vs. Local Impacts

Where to get good, detailed information

- Wind Energy Center
 - Community Wind Fact sheets: www.umass.edu/windenergy/
 - **413-545-4359**
- www.windpower.org
 - Lots of accessible, technical information
- Others:
 - AWEA: www.awea.org
 - Wind Power America: www. windpoweringamerica.gov
 - Utility Wind Interest Group: www.uwig.org
 - Links: www.fresh-energy.org
 - Database of State Incentives for R.E.: www.dsireusa.org
 - NREL Publications Database: http://www.nrel.gov/publications

